Matlab  |  Mathematica  |  Mathcad  |  Maple  |  Statistica  |  Tabula  |  Другие пакеты Поиск по сайту
Internet-класс  |  Примеры  |  Методики  |  Банк задач  |  Форум  |  Download  |  Ссылки  |  Конкурсы


 
Численное решение уравнений и систем уравнений
А.А. Ханова

Вернуться на страницу <Методические разработки>

В начало

 

  Решение уравнений средствами Mathcad

Решение одного уравнения ~ Решение систем уравнений ~ Символьное решение уравнений

 

Решение одного уравнения

 

Для простейших уравнений вида f(x) = 0 решение в Mathcad находится с помощью функции root.

root( f(х1, x2, …), х1, a, b )

Возвращает значение х1, принадлежащее отрезку [a, b], при котором выражение или функция f(х) обращается в 0. Оба аргумента этой функции должны быть скалярами. Функция возвращает скаляр.

Аргументы:

f(х1, x2, …) - функция, определенная где-либо в рабочем документе, или выражение. Выражение должно возвращать скалярные значения.

х1 - - имя переменной, которая используется в выражении. Этой переменной перед использованием функции root необходимо присвоить числовое значение. Mathcad использует его как начальное приближение при поиске корня.

a, b - необязательны, если используются, то должны быть вещественными числами, причем a < b.

Если после многих итераций Mathcad не находит подходящего приближения, то появится сообщение (отсутствует сходимость).

Эта ошибка может быть вызвана следующими причинами:

  • Уравнение не имеет корней.
  • Корни уравнения расположены далеко от начального приближения.
  • Выражение имеет локальные max и min между начальным приближением и корнями.
  • Выражение имеет разрывы между начальными приближениями и корнями.
  • Выражение имеет комплексный корень, но начальное приближение было вещественным.

Чтобы установить причину ошибки, исследуйте график f(x). Он поможет выяснить наличие корней уравнения f(x) = 0 и, если они есть, то определить приблизительно их значения. Чем точнее выбрано начальное приближение корня, тем быстрее будет root сходиться.

Рекомендации по использованию функции root:

  • Для изменения точности, с которой функция root ищет корень, нужно изменить значение системной переменной TOL. Если значение TOL увеличивается, функция root будет сходиться быстрее, но ответ будет менее точен. Если значение TOL уменьшается, то функция root будет сходиться медленнее, но ответ будет более точен. Чтобы изменить значение TOL в определенной точке рабочего документа, используйте определение вида . Чтобы изменить значение TOL для всего рабочего документа, выберите команду Математика Ю Параметры… Ю Переменные Ю Допуск сходимости (TOL).
  • Если два корня расположены близко друг от друга, следует уменьшить TOL, чтобы различить их.
  • Если функция f(x) имеет малый наклон около искомого корня, функция root(f(x), x) может сходиться к значению r, отстоящему от корня достаточно далеко. В таких случаях для нахождения более точного значения корня необходимо уменьшить значение TOL. Другой вариант заключается в замене уравнения f(x) = 0 на g(x) = 0

.

 

Рисунок 11.

 

  • Для выражения f(x) с известным корнем а нахождение дополнительных корней f(x) эквивалентно поиску корней уравнения h(x) = f(x)/(x - a). Подобный прием полезен для нахождения корней, расположенных близко друг к другу. Проще искать корень выражения h(x), чем пробовать искать другой корень уравнения f(x) = 0, выбирая различные начальные приближения.

Нахождение корней полинома

Для нахождения корней выражения, имеющего вид

vnxn + ... + v2x2 + v1x + v0,

лучше использовать функцию polyroots, нежели root. В отличие от функции root, функция polyroots не требует начального приближения и возвращает сразу все корни, как вещественные, так и комплексные.

Polyroots(v)

Возвращает корни полинома степени n. Коэффициенты полинома находятся в векторе v длины n + 1. Возвращает вектор длины n, состоящий из корней полинома.

Аргументы:

v - вектор, содержащий коэффициенты полинома.

Рисунок 11 иллюстрирует решение уравнений средствами Mathcad.

 

Решение систем уравнений

 

MathCAD дает возможность решать также и системы уравнений. Максимальное число уравнений и переменных равно 50. Результатом решения системы будет численное значение искомого корня.

Для решения системы уравнений необходимо выполнить следующее:

  • Задать начальное приближение для всех неизвестных, входящих в систему уравнений. Mathcad решает систему с помощью итерационных методов.
  • Напечатать ключевое слово Given. Оно указывает Mathcad, что далее следует система уравнений.
  • Введите уравнения и неравенства в любом порядке. Используйте [Ctrl]= для печати символа =. Между левыми и правыми частями неравенств может стоять любой из символов <, >, less.gif (65 bytes) и more.gif (65 bytes) .
  • Введите любое выражение, которое включает функцию Find, например: а:= Find(х, у).

Find(z1, z2, . . .)

Возвращает точное решение системы уравнений. Число аргументов должно быть равно числу неизвестных.

Ключевое слово Given, уравнения и неравенства, которые следуют за ним, и какое-либо выражение, содержащее функцию Find, называют блоком решения уравнений.

Следующие выражения недопустимы внутри блока решения:

  • Ограничения со знаком notequal.gif (827 bytes) .
  • Дискретный аргумент или выражения, содержащие дискретный аргумент в любой форме.
  • Неравенства вида a < b < c.

Блоки решения уравнений не могут быть вложены друг в друга, каждый блок может иметь только одно ключевое слово Given и имя функции Find.

Функция, которая завершает блок решения уравнений, может быть использована аналогично любой другой функции. Можно произвести с ней следующие три действия:

  • Можно вывести найденное решение, напечатав выражение вида:

Find(var1, var2,…) =.

  • Определить переменную с помощью функции Find:

a := Find(x) - скаляр,

var := Find(var1, var2,…) - вектор.

Это удобно сделать, если требуется использовать решение системы уравнений в другом месте рабочего документа.

  • Определить другую функцию с помощью Find

f(a, b, c, …) := Find(x, y, z, …).

Эта конструкция удобна для многократного решения системы уравнений для различных значений некоторых параметров a, b, c,…, непосредственно входящих в систему уравнений.

Сообщение об ошибке (Решение не найдено) при решении уравнений появляется, когда:

  • Поставленная задача может не иметь решения.
  • Для уравнения, которое не имеет вещественных решений, в качестве начального приближения взято вещественное число и наоборот.
  • В процессе поиска решения последовательность приближений попала в точку локального минимума невязки. Для поиска искомого решения нужно задать различные начальные приближения.
  • Возможно, поставленная задача не может быть решена с заданной точностью. Попробуйте увеличить значение TOL.

Пример 1 Рисунка 12 иллюстрирует решение системы уравнений в Mathcad.

 

Рисунок 12.

 

 

Для решения линейных систем уравнений используется функция lsolve.

Приближенные решения

Функция Minner очень похожа на функцию Find (использует тот же алгоритм). Если в результате поиска не может быть получено дальнейшее уточнение текущего приближения к решению, Minner возвращает это приближение. Функция Find в этом случае возвращает сообщение об ошибке. Правила использования функции Minner такие же, как и функции Find.

Minerr(z1, z2, . . .)

Возвращает приближенное решение системы уравнений. Число аргументов должно быть равно числу неизвестных.

Если Minner используется в блоке решения уравнений, необходимо всегда включать дополнительную проверку достоверности результатов.

 

Символьное решение уравнений

 

В Mathcad можно быстро и точно найти численное значение корня с помощью функции root. Но имеются некоторые задачи, для которых возможности Mathcad позволяют находить решения в символьном (аналитическом) виде.

Решение уравнений в символьном виде позволяет найти точные или приближенные корни уравнения:

  • Если решаемое уравнение имеет параметр, то решение в символьном виде может выразить искомый корень непосредственно через параметр. Поэтому вместо того, чтобы решать уравнение для каждого нового значения параметра, можно просто заменять его значение в найденном символьном решении.
  • Если нужно найти все комплексные корни полинома со степенью меньше или равной 4, символьное решение даст их точные значения в одном векторе или в аналитическом или цифровом виде.

Команда Символы Ю Переменные Ю Вычислить позволяет решить уравнение относительно некоторой переменной и выразить его корни через остальные параметры уравнения. Чтобы решить уравнение символьно необходимо:

  • Напечатать выражение (для ввода знака равенства используйте комбинацию клавиш [Ctrl]=).
  • Выделить переменную, относительно которой нужно решить уравнение, щелкнув на ней мышью.
  • Выбрать пункт меню Символы Ю Переменные Ю Вычислить.

Нет необходимости приравнивать выражение нулю. Если Mathcad не находит знака равенства, он предполагает, что требуется приравнять выражение нулю.

Чтобы решить систему уравнений в символьном виде, необходимо выполнить следующее:

  • Напечатать ключевое слово Given.
  • Напечатать уравнения в любом порядке ниже слова Given. Удостоверьтесь, что для ввода знака = используется [Ctrl]=.
  • Напечатать функцию Find, соответствующую системе уравнений.
  • Нажать [Ctrl]. (клавиша CTRL, сопровождаемая точкой). Mathcad отобразит символьный знак равенства ® .
  • Щелкнуть мышью на функции Find.

Пример 2 Рисунка 12 иллюстрирует символьное решение системы уравнений в Mathcad.

 

В начало

Вернуться на страницу <Методические разработки>

 

 

Карта сайта | На первую страницу | Поиск | О проекте | Сотрудничество | e-mail
Корпоративная почта | ActiveCloud | Антивирус Касперского | Matlab | Подписка на MSDN для вузов | ИТ-ПРОРЫВ

Исправляем ошибки: Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter

Наши баннеры


Copyright © 1993-2014. Компания Softline. Все права защищены.

Дата последнего обновления информации на сайте: 31.10.14
Сайт начал работу 01.09.00

Softline – программное обеспечение, IT-консалтинг, лицензирование, обучение

подарки – подарочные сертификаты

 

            Rambler's Top100