
Implementing ISO 26262 second edition
with the LDRA tool suite®

Cost effective software certification
from ASIL A to ASIL D

www.ldra.com

© LDRA Ltd. This document is property of LDRA Ltd. Its contents cannot be reproduced, disclosed or utilised without company approval.

LDRA Ltd Implementing ISO 26262 2nd edition with the LDRA tool suite® 1

* Registration required to download the document

Software Technology

Technical White Paper

http://www.ldra.com

LDRA Ltd 2

Contents

Background	 3

Automotive Safety Integrity Levels (ASILs)	 3

Changes to ISO 26262 second edition 4

Security in the context of ISO 26262 4

 ISO 26262 Second Edition process objectives	 5

Automating ISO 26262 processes	 7

Technical safety concept (part 4, clause 6)	 7

Specification of software safety requirements (part 6, clause 6)	 8

Software architectural design (part 6, clause 7) 8

Reverse engineering	 10

Model based development	 10

Software unit design and implementation (part 6, clause 8) 	 10

Coding guidelines	 10

Software architectural design and unit implementation	 12

Software unit verification (part 6, clause 9) and software integration and testing (part 6, clause 10)	   14

Structural coverage metrics	 17

Software test and model based development	 19

Bidirectional traceability (parts 4 and 6)	 20

Confidence in the use of software tools (part 8)	 23

Conclusions	 24

Works Cited	 25

 Implementing ISO 26262 2nd edition with the LDRA tool suite®

Background

There is an ever-widening range of automotive electrical and/or electronic (E/E/PE) systems such as
adaptive driver assistance systems, anti-lock braking systems, steering and airbags. Their increasing levels
of integration and connectivity provide almost as many challenges as their proliferation, with non-critical
systems such as entertainment systems sharing the same communications infrastructure as steering,
braking and control systems. The net result is a necessity for exacting functional safety development
processes, from requirements specification, design, implementation, integration, verification, validation,
and through to configuration.

ISO 26262 “Road vehicles – Functional safety” was updated in 20181, having first been published in 20112
in response to this explosion in automotive E/E/PE system complexity and the associated risks to public
safety. Like the rail, medical device and process industries before it, the automotive sector based their
functional standard on the industry agnostic functional safety standard IEC 615083. The resulting ISO 26262 has
become the dominant automotive functional safety standard, and its requirements and processes are
becoming increasingly familiar throughout the industry.

Many of the practices adopted by IEC 61508 and its derivatives can be traced to the commercial and
defence avionics industries. The RTCA Inc. series standards such as DO-178B/C4, DO-254, DO-278A
and their supplements, have proven that adherence to a structured set of best practices results in large
scale reliable systems that protect public safety. Although ISO 26262 even in its original form was a
relatively recent innovation, this history is significant because the establishment of functional safety
standards elsewhere gave rise to a sophisticated industry providing support for their effective application.
Consequently, the automotive industry benefits from established and proven tools and techniques
predating ISO 26262 itself.

This document describes the key software development and verification process activities of the standard,
and uses LDRA’s tool suite to show how automation can assist in proving compliance in a cost-effective
manner. Extracts from ISO 26262 second edition are shown in italics5.

Automotive Safety Integrity Levels (ASILs)

Like DO-178B/C and IEC 61508 before it, ISO 26262 specifies a number of hazard classifications levels – in
this case, known as ASILs (Automotive Safety Integrity Levels). Development process checks and safety
measures are specified to avoid an unreasonable residual risk proportionate to the ASIL. ASILs range from
A to D, where ASIL D represents the most hazardous and hence demanding level so that the overhead
involved in producing a safety critical ASIL D system (e.g. automatic braking) is significantly greater than
that required to produce an ASIL A system with few safety implications (e.g. the in-car entertainment
system).

ASILs are assigned as properties of each individual safety function at the item level, where an item
is defined as a “system or combination of systems, to which ISO 26262 is applied, that implements a
function or part of a function at the vehicle level”. The assigned ASIL for a safety function in a safety-
related system is dictated by the properties of associated hazardous events, and is influenced by three of
its attributes:

• frequency of the situation (or “exposure”)
• impact of possible damage (or “severity”)
• controllability

ISO 26262 supports the decomposition of Functional Safety Requirements (FSRs) in a process often known
as “ASIL decomposition” (Figure 1), which can help to reduce cost and effort.

1 https://www.iso.org/standard/68383.html
2 https://www.iso.org/news/2012/01/Ref1499.html
3 IEC 61508:2010 Functional safety of electrical/electronic/programmable electronic safety-related systems
4 RTCA DO-178C Software Considerations in Airborne Systems and Equipment Certification, Prepared by SC-205, December 13, 2011
5 Extracts from ISO 26262:2018, Copyright © The British Standards Institution 2018. All rights acknowledged.

LDRA Ltd Implementing ISO 26262 2nd edition with the LDRA tool suite®3

https://www.iso.org/standard/68383.html
https://www.iso.org/news/2012/01/Ref1499.html

Figure 1: Decomposition of the different ASIL ratings throughout the item can occur over different systems,
elements and components

Decomposition of the different ASIL ratings throughout the item can occur over different systems,
elements and components, working down through the systems, subsystems, software, and hardware. ASIL
decomposition is typically performed manually and must result in redundant safety requirements allocated
to design elements of sufficient technical independence.

Changes to ISO 26262 second edition

The 2018 revision to the ISO 26262 standard reflects industry feedback and updates based on advances in
technology since the standard was originally published. Reconstructed to provide more detailed objectives
and extensions to the overall vocabulary, notable additions to the standard include:

• objective oriented confirmation measures
• management of safety anomalies
• references to cyber-security
• updated target values for hardware architecture metrics
• evaluation of hardware elements
• additional guidance on dependent failure analysis
• guidance on fault tolerance, safety-related special characteristics, and software tools
• guidance for model-based development and software safety analysis

In addition, two completely new parts were added to the standard: ISO 26262 Part 11 which relates to
Semiconductors6 and ISO 26262 Part 12 which relates to Motorcycles7.

ISO 26262 second edition therefore consists of 12 parts with three focused on product development:
system level (Part 4)8, hardware level (Part 5)9, and software level (Part 6)10. ISO 26262 Part 6 provides
detailed industry specific guidelines for the production of all software for automotive systems and
equipment, whether it is safety critical or not.

Security in the context of ISO 26262

Most embedded software used in the automotive sector has not taken security requirements into account,
simply because security and connectivity have not really been on the agenda. Automotive embedded
applications have tended to be static, fixed function, device specific implementations. Isolation has been a
sufficient guarantee of security for many years, and practices and processes have relied on that status.

Even as communication within the car became increasingly sophisticated, while ever the vehicle itself
remained an isolated entity, demonstrations of the ability to infiltrate safety critical systems from more
benign applications remained something of an academic point11. After all, it has always been possible to
damage a car’s electrical systems with a pair of well-aimed wire cutters.

LDRA Ltd Implementing ISO 26262 2nd edition with the LDRA tool suite®4

6 ISO 26262-11:2018 Road vehicles -- Functional safety – Part 11: Guidelines on application of ISO 26262 to semiconductors
7 ISO 26262-12:2018 Road vehicles -- Functional safety – Part 12: Adaptation of ISO 26262 for motorcycles
8 ISO 26262-4:2018 Road vehicles -- Functional safety -- Part 4: Product development at the system level
9 ISO 26262-5:2018 Road vehicles -- Functional safety -- Part 5: Product development at the hardware level
10 ISO 26262-6:2018 Road vehicles -- Functional safety -- Part 6: Product development at the software level
11 http://www.autosec.org/pubs/cars-oakland2010.pdf -- Experimental Security Analysis of a Modern Automobile, Karl Koscher, Stephen Checkoway et.al.

http://www.autosec.org/pubs/cars-oakland2010.pdf

The key element is therefore the connection to the outside world. That changes things dramatically
because it makes remote access possible while requiring no physical modification to the car’s systems,
most famously demonstrated in Miller and Valasek’s work “Remote Exploitation of an Unaltered Passenger

Vehicle”12.

Perhaps because of this traditional isolation of automotive systems, ISO 26262 first edition made no
specific mention of security; indeed, in the field of safety critical embedded software, security concerns
have generally been perceived to be a separate domain from the core business of functional safety. Yet if
hackers have the potential to remotely control steering, braking, and engine control systems, then security
vulnerabilities clearly put safety at risk. In this situation safety and security are indistinguishable.

In acknowledgement of that fact, in ISO 26262 second edition channels of communication between
functional safety and cybersecurity have been identified at both the functional safety management
level and product development at the system level. Such an approach provides a useful interface to
the recommendations outlined in the current SAE J3061 Cybersecurity Guidebook for Cyber-Physical

Vehicle Systems”13 “Cybersecurity” and the proposed ISO/SAE 21434 “Road vehicles – Cybersecurity

engineering14”. ISO 26262-2:2018 Annex E “Guidance on potential interaction of functional safety with
cybersecurity” further discusses “the possible interactions between the activities of functional safety and
cybersecurity”.

As for any other safety related risk, as soon as there is potential for security vulnerabilities to threaten
safety, ISO 26262 demands safety goals and requirements to deal with them. It requires that the safety
goals be classified with appropriate ASILs for their criticality, designed with due reference to their
classification, and developed and verified to show compliance with the system’s safety requirements. In
short, the action to be taken to deal with each safety-threatening security issue needs to be proportionate
to the risk (and hence ASIL).

ISO 26262 second edition process objectives

A key element of part 4 is the practice of allocating technical safety requirements in the system design
specification, and developing that design further to derive an item integration and testing plan. It applies
to all aspects of the system including software, with the explicit subdivision of hardware and software
development practices being dealt with further down the “V” model.

Part 6 refers more specifically to the development of the software aspects of the product. It is concerned
with:

• general topics for the product development at the software level
• specification of software safety requirements
• software architectural design
• software unit design and implementation
• software unit verification
• software integration and testing
• testing of the embedded software

Figure 2 is an extract from the standard, shown here with parts 4 and 6 highlighted for context.

LDRA Ltd Implementing ISO 26262 2nd edition with the LDRA tool suite®5

 12 http://illmatics.com/Remote%20Car%20Hacking.pdf -- Remote Exploitation of an Unaltered Passenger Vehicle, Dr. Charlie Miller & Chris Valasek, August 2015

 13 https://webstore.ansi.org/standards/sae/sae30612016j3061 -- Cybersecurity Guidebook For Cyber-Physical Vehicle Systems
 14 https://www.iso.org/standard/70918.html -- Road Vehicles -- Cybersecurity engineering

http://illmatics.com/Remote%20Car%20Hacking.pdf Remote Exploitation of an Unaltered Passenger Vehicl

Figure 2: Software development is primarily referenced in parts 4 and 6, shown here in the context of ISO
26262 second edition as a whole.

These different elements are not intended to be viewed as isolated silos; indeed, the standard insists
that safety requirements are traceable to architectural design, that architectural design to unit design
and implementation, and so on. ISO 26262 also requires that this traceability is bidirectional so that (for
instance) there are no safety requirements not covered in the architectural design, and no design elements
not demanded by the architecture. This approach reduces the risk of failure by ensuring that not only is all
required functionality present and proven, but also that there is no redundant code or “feature creep”.

Once software safety requirements and architecture are defined, the software units can be designed and
then implemented in accordance with that design. The developing organization is required to establish
coding rules appropriate to the circumstances of the project, and the source code for the implemented
units must be validated to ensure that those coding rules are adhered to. The software units must then
be dynamically tested (executed) to demonstrate that they fulfil the software unit design specification
and do not include unspecified functionality. Structural coverage analysis is then required to determine
which code structures and component interfaces have not been exercised during execution of these
requirements-based test procedures. Unexecuted portions of code require further analysis resulting
in addition or modifications of test cases, changes to inadequate requirements, removal of dead or
deactivated code, or unintended functionality.

Variations in low level implementation details such as endianness and the sizes of data and address
words can result in differing behaviour between test and target environments. Part 6 requires that the test
environment shall correspond as closely as possible to the target environment.

Although it provides extensive guidelines relating to the use of software tools, ISO 26262 does not require
that they are used. However, for all but very trivial applications, attempting to meet the standard without
some level of automation would be a disproportionately labour intensive task. Tools are available to
assist with almost all aspects of Part 6 not only to automate the tests themselves, but also to provide
documentary evidence (or “artefacts”) relating to their successful completion.

LDRA Ltd Implementing ISO 26262 2nd edition with the LDRA tool suite®6

Automating ISO 26262 processes

Figure 3 illustrates how each key stage in the ISO 26262 software development lifecycle can be automated.

Figure 3: Mapping the capabilities of an automated tool chain to the ISO 26262 second edition software
development process guidelines

Software tools effectively leverage the experience and expertise of their vendors in this and other
industries to ease the path to certification.

Each element of the V diagram is expanded in the following clauses, and relevant tables from the ISO
26262 second edition standard expanded and referenced. Note that each of the tables has a clear
association with a particular element of the V-Model shown in Figure 3.

Technical safety concept (part 4, clause 6)

“The technical safety concept is an aggregation of the technical safety requirements and the
corresponding system architectural design, that provides rationale as to why the system architectural
design is suitable to fulfil safety requirements, resulting from activities described in ISO 26262-3 (with
consideration of non-safety requirements) and design constraints.”

Although part 6 is the primary document for software development, it needs to be considered in the
context of the system design for the product as a whole which is the domain of part 4. In order to
develop a system architectural design, functional safety requirements, technical safety requirements,
and non-safety-related requirements are implemented. Clearly those work products include software
considerations, but in this system design sub-phase, safety-related and non-safety-related requirements
are handled within one development process whether they impact software, hardware, or both in the form
of the hardware-software interface.

LDRA Ltd Implementing ISO 26262 2nd edition with the LDRA tool suite®7

1

Requirements
traceability

TBmanager®

IBM® Rational®
DOORS®

Polarion ALM,
ReqIF,

MS Word &
Excel

Static analysis
Quality metrics

Coding standards compliance
TBvision®

LDRArules®, LDRAcover®

Automated unit testing
TBrun®

LDRAunit®

TBeXtreme®

Programming standards
checking and metrication

TBvision®

LDRArules®

ISO 26262-6:2018
section 7

Software
architectural

design

Model based
development

IBM® Rational®
Rhapsody®

Mathworks Simulink
Esterel SCADE

Test verification
TBvision® and
TBrun®

Integrated and model
driven testing
TBvision®

Compliance
management

ISO 26262-6:2018
section 6

Specification of
software safety
requirements

ISO 26262-4:2018
section 6

Technical safety
concept

ISO 26262-6:2018
section 8

Software unit
design and

implementation

ISO 26262-6:2018
section 9

Software unit
verification

ISO 26262-6:2018
section 10
Software

integration and
verification

ISO 26262-6:2018
section 11

Testing of the
embedded
software

ISO 26262-4:2018
section 7

System and
item integration

and testing

The products of this design phase potentially include CAD drawings, spreadsheets, textual documents
and many other artefacts, and clearly a variety of tools can be involved in their production. The
management of the status of each of those elements and maintaining traceability between them and
subsequent phases can cause a project management headache.

The ideal tools for requirements management depends largely on the scale of the development. If there
are few developers in a local office, a simple spreadsheet or Microsoft Word document may suffice.
Bigger projects, perhaps with contributors in geographically diverse locations, are likely to benefit from

an Application Lifecycle Management (ALM) tool such as IBM Rational DOORS15, Siemens PLM Polarion

ALM16, or other ALM tools supporting standard Requirements Interchange Format17.

Part 4 also requires adherence to the principle of bidirectional traceability. That requirement is common
to all phases of development, and its automation is discussed later in this document when other related
principles have been introduced.

Specification of software safety requirements (part 6, clause 6)

The objectives of the software safety requirements sub-phase are concerned with:

• the specification or refinement of the software safety requirements
• the definition of safety-related functionalities and properties of the software required for the

implementation
• the refinement of the requirements of the hardware-software interface
• the verification that the software safety requirements and the hardware-software interface

requirements are suitable for software development and are consistent with the technical
safety concept and the system architectural design specification

The technical safety requirements are refined and allocated to hardware and software during the
technical concept phase as described in part 4, clause 8. The specification of the software safety
requirements considers constraints of the hardware and the impact of these constraints on the software,
but primarily focuses on the specification of software safety requirements to support the subsequent
design phases.

This sub-phase is essentially the interface between the product-wide system design of parts 4 and 6. It
details the process of evolution of lower level requirements as they relate specifically to the software
system. That implies a continued leveraging of the requirements management tools selected for the
project, as discussed in relation to the System Design sub-phase.

Software architectural design (part 6, clause 7)

The objectives of the software architectural design sub-phase are concerned with:
• the development of a software architectural design that satisfies established requirements

with the required ASIL
• support for the implementation and verification of the software

There are many tools available for the generation of the software architectural design, with graphical
representation of that design an increasingly popular approach. Appropriate tools include those

exemplified by IBM Rational Rhapsody18, MathWorks Simulink19 and Esterel SCADE20. Figure 4 is a
modified version of Table 4 reproduced from part 6, showing how the software architectural design is to
be verified both at design time and as the design is implemented as development progresses.

LDRA Ltd Implementing ISO 26262 2nd edition with the LDRA tool suite®8

 15 http://www-03.ibm.com/software/products/en/ratidoor
 16 https://polarion.plm.automation.siemens.com/
 17 http://www.omg.org/spec/ReqIF/
 18 http://www-03.ibm.com/software/products/en/ratirhapfami/
 19 https://www.mathworks.com/products/simulink.html
 20 http://www.esterel-technologies.com/products/scade-suite/®

http://www-03.ibm.com/software/products/en/ratidoor
https://polarion.plm.automation.siemens.com/
http://www.omg.org/spec/ReqIF/
http://www-03.ibm.com/software/products/en/ratirhapfami/
https://www.mathworks.com/products/simulink.html
http://www.esterel-technologies.com/products/scade-suite/

LDRA Ltd Implementing ISO 26262 2nd edition with the LDRA tool suite®9

Topics
ASIL

A B C D
1a Walkthrough of the design ++ + o o

1b Inspection of the design + ++ ++ ++

1c Simulation of the dynamic parts of the design + + + +

1d Prototype generation o o + +

1e Formal verification o o + +

1f Control flow analysis + + ++ ++

1g Data flow analysis + + ++ ++

1h Scheduling analysis + + ++ ++

“++” The method is highly recommended for this ASIL.
“+” The method is recommended for this ASIL.
“o” The method has no recommendation for or against its usage for this ASIL.
 Satisfied by the LDRA tool suite

Figure 4: Mapping the capabilities of the LDRA tool suite to “Table 4:Methods for the

verification of the software architectural design” specified by ISO 26262-6:201821

Static analysis tools have a part to play in the verification of the design in the form of control and
data flow analysis of the code generated in accordance with it. As shown in Figure 5, the tools
derive the relationship between some or all of the code components and represent it graphically
such that it can then be compared with the intended design.

Figure 5: Diagrammatic representations of control and data flow generated from source code by the
LDRA tool suite aid verification of software architectural design

21 Based on table 4 from ISO 26262-6:2018, Copyright © The British Standards Institution 2018. All rights acknowledged

Reverse engineering

Much of the flow of the ISO 26262 processes is based on an overriding presumption that the project

either begins with nothing, or is “proven in use”22 which implies the deployment of something that has
been shown to be reliable after many runtime hours. However, it is entirely possible that there is a need
to adapt a long established application which would void that “proven in use” argument, as would the
integration of third-party source code into an existing design. What if source code exists, but design
documentation doesn’t?

The second edition acknowledges this dilemma with the addition of two new clauses in part 8, namely
clause 15 “Interfacing an application that is out of scope of ISO 26262” and clause 16 “Integration of
safety-related systems not developed according to ISO 26262”.

In such circumstances a graphical representation of the code (Figure 5) can help to establish the
architecture of the existing system, such that the additions to it can be designed and proven in
accordance with ISO 26262 principles.

Model based development

The LDRA tool suite can be integrated with several different model based development tools, one such
example being MathWorks Simulink. The development phase itself involves the creation of the model in
the usual way, with the integration becoming more pertinent once source code has been auto generated
from that model.

The integration itself is primarily leveraged during software unit testing, and software integration and
testing. The topic of model based development is therefore revisited later in this document in relation to
those sub-phases.

Software unit design and implementation (part 6, clause 8)

The objectives of the software unit design and implementation subphase are focused upon:
• the development of a software unit design in accordance with the established architectural

design, design criteria and requirements
• the implementation of those software units of evidence that software requirements are met

Coding guidelines

There are several aspects of software unit design and implementation to be considered, starting with a
definition of guidelines associated with how the selected programming language is to be used. Figure
6 is a modified version of Table 1 reproduced from part 6. Table 1 in the standard shows the coding
and modelling guidelines to be enforced during implementation, and it is superimposed here with an
illustration of where the LDRA tool suite can confirm compliance, or can assist with the confirmation of
compliance.

LDRA Ltd Implementing ISO 26262 2nd edition with the LDRA tool suite®10

22 ISO 26262-8:2018 Road vehicles -- Functional safety -- Part 8: Supporting processes

Topics
ASIL

A B C D
1a Enforcement of low complexity ++ ++ ++ ++
1b Use of language subsets ++ ++ ++ ++
1c Enforcement of strong typing ++ ++ ++ ++
1d Use of defensive implementation techniques + + ++ ++
1e Use of well-trusted design principles + + ++ ++
1f Use of unambiguous graphical representation + ++ ++ ++
1g Use of style guides + ++ ++ ++
1h Use of naming conventions ++ ++ ++ ++
1i Concurrency aspects + + + +
“++” The method is highly recommended for this ASIL.
“+”  The method is recommended for this ASIL.
“o”  The method has no recommendation for or against its usage for this ASIL.
Supported by the LDRA tool suit
 Verified by the LDRA tool suite

Figure 6: Mapping the capabilities of the LDRA tool suite to “Table 1: Topics to be covered by modelling
and coding guidelines” specified by ISO 26262-6:201823

All of these guidelines can be justified on the basis that they make the resulting code more reliable, less
prone to error, easier to test, and/or easier to maintain. For example:

•  Low complexity (1a, Figure 6) is important because complex code is less easy to read and maintain,
and hence more susceptible to error. For low complexity to be enforced, it needs to be quantified
and a “pass/fail” criteria established.

•  Language subsets (1b, Figure 6) such as MISRA C restrict the use of a programming language to
those elements known to be least susceptible to causing problems.

•   Use of style guides (1g, Figure 6) ensures that the code has a consistent appearance no matter
who has written it. That makes it much easier to maintain or modify, which in turn makes it less
prone to error.

The traditional approach to enforcing adherence to such guidelines would be to use peer code reviews.
These may well still have a place in the development process – they can be very useful as an aid to learning
between team members, for example – but automating the more tedious checks is far more efficient and less
prone to error (Figure 7).

Figure 7: Highlighting violated coding rules and guidelines in the LDRA tool suite

LDRA Ltd Implementing ISO 26262 2nd edition with the LDRA tool suite®11

 23 Based on table 1 from ISO 26262-6:2018, Copyright © The British Standards Institution 2018. All rights acknowledged

Supported by the LDRA tool suite
Verified by the LDRA tool suite

Part 6 highlights the MISRA language subsets, but only
as an example – not as an instruction that they should be
used. There are many different sets of coding rules available
(see the sidebar), and even supposing a particular set is
chosen as a basis it is entirely permissible to manipulate,
adjust and add to it to make it more appropriate for a
particular application. Clearly, if a tool is to be useful in such
circumstances then it too must be able to accommodate
these adjustments.

Software architectural design and unit
implementation

If the coding guidelines of part 6 are analogous to the
“bricks” of the software application, then its principles
for software architectural design define where the “walls”
should be built, and its unit implementation guidelines
define how those “walls” should be built.

Establishing appropriate project guidelines for coding,
architectural design and unit implementation are clearly
three discrete tasks but just like a bricklayer building a
wall, software developers responsible for implementing the
design need to be mindful of them all concurrently. Figure 8
and Figure 9 illustrate how the architectural design and unit
implementation principles required by part 6 can usually
be checked by means of static analysis, just like coding
guidelines.

Figure 8 is a modified version of Table 3 reproduced from part 6, and it is superimposed here with an
illustration of where the LDRA tool suite can assist with the confirmation of compliance.

Principles
ASIL

A B C D
1a Appropriate hierarchical structure ++ ++ ++ ++
1b Restricted size of software components ++ ++ ++ ++
1c Restricted size of interfaces + + + ++
1d Strong cohesion within each software component + ++ ++ ++
1e Loose coupling between software components + ++ ++ ++
1f Appropriate scheduling properties ++ ++ ++ ++
1g Restricted use of interrupts + + + ++
1h Appropriate spatial isolation of the software components + + + ++
1i Appropriate management of shared resources ++ ++ ++ ++
“++” The method is highly recommended for this ASIL.
“+”  The method is recommended for this ASIL.
“o”  The method has no recommendation for or against its usage for this ASIL.
Supported by the LDRA tool suite

Figure 8: Mapping the capabilities of the LDRA tool suite to “Table 3: Principles for software architectural design”

specified by ISO 26262-6:201824

As for the coding guidelines before them, all of these principles are founded on the notion that they make the
resulting code more reliable, less prone to error, easier to test and/or easier to maintain.

LDRA Ltd Implementing ISO 26262 2nd edition with the LDRA tool suite®12

Language subsets
There are many language subsets (or
“coding standards”) each with differing
attributes but nevertheless with strong
similarities, especially when referencing
the same language. The most popular
standards include:

C
MISRA C:1998
MISRA C:2004
MISRA C:2012
CERT C
CWE

C++
MISRA C++:2008
JSF++ AV
HIC++
CERT C++

Java
CWE
CERT J

 24 Based on table 3 from ISO 26262-6:2018, Copyright © The British Standards Institution 2018. All rights acknowledged

 For example:
•  Restricted size of software components (1b, Figure 8) is important not least because large,

rambling functions are difficult to read, maintain, and test – and hence more susceptible to error.
•  Restricted size of interfaces (1c, Figure 8) is important for similar reasons.
•  Strong cohesion within each software component (1d, Figure 8) refers to the level of strength

and unity with which different components of a software program are inter-related with each
other. High cohesion results from the close linking between the modules of a software program,
which in turn impacts on how rapidly it can perform the different tasks assigned to it.

Figure 9 is a modified version of Table 6 reproduced from part 6, and it is superimposed here with an
illustration of where compliance can be confirmed automatically.

Principles
ASIL

A B C D
1a One entry and one exit point in subprograms and functions ++ ++ ++ ++
1b No dynamic objects or variables, or else online test during their

creation
+ ++ ++ ++

1c Initialization of variables ++ ++ ++ ++
1d No multiple use of variable names + + ++ ++
1e Avoid global variables or else justify their usage + + ++ ++
1f Restricted use of pointers o + + ++
1g No implicit type conversions + ++ ++ ++
1h No hidden data flow or control flow + ++ ++ ++
1i No unconditional jumps ++ ++ ++ ++
1j No recursions + + ++ ++
“++” The method is highly recommended for this ASIL.
“+”  The method is recommended for this ASIL.
“o”  The method has no recommendation for or against its usage for this ASIL.
Verified by the LDRA tool suite

Figure 9: Mapping the capabilities of the LDRA tool suite to “Table 6: Design principles
for software unit design and implementation” specified by ISO 26262-6:201825

Once again, all of these principles are founded on the notion that they make the resulting code more
reliable, less prone to error, easier to test and/or easier to maintain. For example:

• Initialization of variables (1c, Figure 9) references an example of “undefined behaviour” in the C
and C++ languages in that different compiler vendors can treat uninitialized variables differently.
Some might initialize them to zero, but if developers rely on that and their code is ported to
different hardware later in life then it may not behave as expected.

• Avoid global variables or else justify their usage (1e, Figure 9). The problem with global
variables is that since every function has access to them, it becomes increasingly hard to figure
out which functions actually read and write to them making testing and maintenance difficult.
Static analysis can help, but it is much cleaner to avoid them.

• No recursion (1j, Figure 9). Recursive functions are difficult to understand, and it is frequently
impossible to predict their likely resource usage.

In general, a fully integrated tool suite can ensure that the good practices required by the standard are
adhered to whether they are coding rules, design principles, or principles for software architectural design.

For example, metrics can be generated to ensure that software component size, complexity, cohesion, and
coupling are measured and controlled. Complexity metrics are generated as a product of interface analysis,
cohesion evaluated through data object analysis, and coupling through data and control coupling analysis
(Figure 10).

LDRA Ltd Implementing ISO 26262 2nd edition with the LDRA tool suite®13

 25 Based on table 6 from ISO 26262-6:2018, Copyright © The British Standards Institution 2018. All rights acknowledged

Figure 10: Output from control and data coupling analysis as represented in the LDRA tool suite

The ongoing application of static analysis throughout the code implementation phase provides support
and tutelage to the development team. In practice, for developers who are newcomers to ISO 26262, the
use of the tool often progresses from pointing out where violations have occurred, to a point where it
provides confirmation that there are none.

Software unit verification (part 6, clause 9) and software integration and testing
(part 6, clause 10)

The objectives of the software unit verification subphase are focused upon:

• the provision of evidence that software requirements are met
• the verification that defined safety measures are properly implemented
• the provision of evidence that unit design is correctly implemented in accordance with the

allotted ASIL
• the provision of evidence that there are no undesirable properties or functionalities

The objectives of the software integration and testing subphase are focused upon:

• the definition and implementation of software elements through to system completion
• the verification that defined safety measures are properly implemented
• the provision of evidence of correct implementation of the software architectural design
• the provision of evidence that there are no undesirable properties or functionalities

The techniques discussed so far in relation to compliance with part 6 have largely focused on static
analysis – that is, an automated “inspection” of the source code. Just as static analysis techniques
embraced verification of adherence to the part 6 guidelines for coding, architectural design and unit
implementation, the dynamic analysis techniques (which involve the execution of some or all of the code)
are helpful in both software unit testing, and software integration testing.

Tables 7, 8, 10, and 11 in part 6, list techniques and metrics for performing unit and integration tests, for
which a primary function is to ensure that the expected functionality and software interfaces are verified at
the unit and integration levels. Software unit and integration tests need to be executed on target hardware
and if the developed unit or integrated software is “safety-related”, then test results should comply with
safety requirements. Fault injection and resource tests help further ensure robustness and resilience. For
organizations that apply model-based development, back-to-back testing at the model and code level is
recommended.

Figure 11 and Figure 12 are modified versions of Table 7 and 8 respectively, each reproduced from part 6.
They are superimposed here with illustrations of where compliance can be confirmed automatically.

LDRA Ltd Implementing ISO 26262 2nd edition with the LDRA tool suite®14

Supported by the LDRA tool suite

Methods
ASIL

A B C D
1a Walk-through ++ + o o
1b Pair-programming + + + +
1c Inspection + ++ ++ ++
1d Semi-formal verification + + ++ ++
1e Formal verification o o + +
1f Control flow analysis + + ++ ++
1g Data flow analysis + + ++ ++
1h Static code analysis ++ ++ ++ ++
1i Static code analysis based on abstract interpretation + + + +
1j Requirement-based test ++ ++ ++ ++
1k Interface test ++ ++ ++ ++
1l Fault injection test + + + ++
1m Resource usage evaluation + + + ++
1n Back-to-back test between model and code, if applicable + + ++ ++
“++” The method is highly recommended for this ASIL.
“+”  The method is recommended for this ASIL.
“o”  The method has no recommendation for or against its usage for this ASIL.

Verified by the LDRA tool suite

Figure 11: Mapping the capabilities of the LDRA tool suite to “Table 7: Methods for
the verification of software unit design and implementation” specified by ISO 26262-6:201826

Methods
ASIL

A B C D
1a Analysis of requirements ++ + o o
1b Generation and analysis of equivalence classes + + + +
1c Analysis of boundary values + ++ ++ ++
1d Error guessing based on knowledge or experience + + ++ ++
”++” The method is highly recommended for this ASIL.
“+“  The method is recommended for this ASIL.
“o“  The method has no recommendation for or against its usage for this ASIL.
Supported by the LDRA tool suite
Verified by the LDRA tool suite

Figure 12: Mapping the capabilities of the LDRA tool suite to “Table 8: Methods for
deriving test cases for software unit testing” specified by ISO 26262-6:201827

Each developed software unit needs to be tested with reference to the software unit design specification.
Test procedures then need to be authored, reviewed, and executed to ensure the software unit does not
contain any undesired functionality. Unit tests can then be executed on the target hardware or simulated
environment based on the verification plan and verification specification. Once the test procedures are
executed, actual outputs are captured and compared with the expected results. Pass/Fail results are then
reported and software safety requirements are verified accordingly.

Figure 13 and Figure 14 are modified versions of Tables 10 and 11 respectively, reproduced from part 6. They
are superimposed here with illustrations of where compliance can be confirmed automatically.

LDRA Ltd Implementing ISO 26262 2nd edition with the LDRA tool suite®15

Supported by the LDRA tool suite

 26 Based on table 7 from ISO 26262-6:2018, Copyright © The British Standards Institution 2018. All rights acknowledged

 27 Based on table 8 from ISO 26262-6:2018, Copyright © The British Standards Institution 2018. All rights acknowledged

Methods
ASIL

A B C D
1a Requirement-based test ++ ++ ++ ++
1b Interface test ++ ++ ++ ++
1c Fault injection test + + ++ ++
1d Resource usage test ++ ++ ++ ++

1e Back-to-back test between code and model, if applicable + + ++ ++

1f Verification of the control flow and data flow + + ++ ++

1g Static code analysis + ++ ++ ++

1h Static code analysis based on abstract interpretation ++ ++ ++ ++

“++” The method is highly recommended for this ASIL.
“+”   The method is recommended for this ASIL.
“o”   The method has no recommendation for or against its usage for this ASIL.
Supported by the LDRA tool suite
Verified by the LDRA tool suite

Figure 13: Mapping the capabilities of the LDRA tool suite to “Table 10: Methods for
verification of software integration” specified by ISO 26262-6:201828

Methods
ASIL

A B C D
1a Analysis of requirements ++ + o o
1b Generation and analysis of equivalence classes + + + +
1c Analysis of boundary values + ++ ++ ++
1d Error guessing based on knowledge or experience + + ++ ++

“++” The method is highly recommended for this ASIL.
“+”   The method is recommended for this ASIL.
“o”   The method has no recommendation for or against its usage for this ASIL.
Supported by the LDRA tool suite
Verified by the LDRA tool suite

Figure 14: Mapping the capabilities of the LDRA tool suite to “Table 11: Methods for
deriving test cases for software integration testing” specified by ISO 26262-6:201829

Integration testing is designed to ensure that when the units are working together in accordance with the
software architectural design, they meet the related specified requirements. In practice, these integration
tests typically involve the verification of safety and non-safety related software functions.

It is desirable for all dynamic testing to use environments that correspond closely to the target
environment and hence test dependencies between hardware and software. However, that is not always
practical. One alternative approach involves developing the tests in a simulated environment and then,
once proven, re-running them on the target. Part 6 provides specific guidance on simulation vs target
testing:

“If the software unit testing is not carried out in the target environment, the differences in the source
and object code, and the differences between the test environment and the target environment, shall be
analysed in order to specify additional tests in the target environment during the subsequent test phases.”

LDRA Ltd Implementing ISO 26262 2nd edition with the LDRA tool suite®16

 28 Based on table 10 from ISO 26262-6:2018, Copyright © The British Standards Institution 2018. All rights acknowledged

 29 Based on table 11 from ISO 26262-6:2018, Copyright © The British Standards Institution 2018. All rights acknowledged

LDRA Ltd Implementing ISO 26262 2nd edition with the LDRA tool suite®17

Should changes become necessary – perhaps as a result of a failed dynamic test, or in response to a
requirement change - then all impacted unit and integration tests would need to be re-run (regression
tested). These regression tests can be automated and systematically re-applied as development
progresses to ensure that new functionality does not compromise any that is established and proven.

As for the static analysis of product code, ISO 26262 does not require that any of these tests deploy
software test tools. However, once again, such tools are capable of making the test process far more
efficient, especially where the project is substantial.

Figure 15: Performing requirement based unit-testing using the LDRA tool suite

The example in Figure 15 shows how the software interface is exposed at the function scope allowing the
user to enter inputs and expected outputs. The tool suite then generates a test harness, which is compiled
and executed on the target hardware. Actual outputs are captured, along with structural coverage data,
and then compared with the expected outputs specified in the test cases.

The inputs and expected outputs defined in the test case are typically derived from requirements
Figure 11, 1j) to ensure intended functionality is verified. Various other forms of tests including negative
tests, fault injection (Figure 11, 1l), and robustness tests use the same mechanism.

Unit tests become integration tests as units are tested as part of a call tree, rather than in isolation. Exactly
the same test data can be used to validate the code in both cases.

The analysis of boundary values can be automated using an “extreme test” facility (Figure 12, 1c) to
automatically generate a series of unit test cases. The same facility also provide for the definition of
equivalence boundary values such as minimum value, value below lower partition value, lower partition
value, upper partition value and value above upper partition boundary. Features like automated stub
management, global variable declarations, and exception handling help to complete a comprehensive unit
test facility.

Structural coverage metrics

In addition to showing that the software functions correctly, dynamic analysis is also used to generate
structural coverage metrics. In tandem with the coverage of requirements at the software unit level,
these metrics provide the necessary data to “reveal shortcomings in requirements-based test cases,
inadequacies in requirements, dead code, deactivated code or unintended functionality.”

Statement, branch and MC/DC coverage can be generated by both the unit test and system activity. Figure
16 is a modified version of Table 9 reproduced from part 6, and it is superimposed here with an illustration
of where compliance can be aided by automated test tools.

Topics
ASIL

A B C D
1a Statement coverage ++ ++ + +
1b Branch coverage + ++ ++ ++
1c MC/DC (Modified Condition/Decision Coverage)	 + + + ++
“++” The method is highly recommended for this ASIL.
“+”   The method is recommended for this ASIL.
“o”   The method has no recommendation for or against its usage for this ASIL.
Verified by the LDRA tool suite

 
Figure 16: Mapping the capabilities of the LDRA tool suite to “Table 9: Structural
coverage metrics at the software unit level” specified by ISO 26262-6:201830

These packages can also operate in tandem, so that (for instance) coverage can be generated for most of
the source code through a dynamic system test and that can be complemented using unit tests to exercise
constructs inaccessible during normal system operation, such as defensive constructs (Figure 17).

Figure 17: Examples of representations of structural coverage within the LDRA tool suite

The generation of functional and call coverage data can also be automated by executing tests on the
target. Figure 18 is a modified version of Table 12 reproduced from part 6, which relates to integration
testing. It is superimposed here with an illustration of where compliance can be confirmed automatically.

Coverage data also forms one part of the mechanism that allows control coupling analysis to be supported
by the LDRA tool suite, as discussed earlier (Figure 10). Possible issues are highlighted during static
analysis, and warning messages raised during dynamic analysis if the actual linkage is different from the
predicted linkage. Graphical representations are then explored to resolve inconsistencies.

LDRA Ltd Implementing ISO 26262 2nd edition with the LDRA tool suite®18

 30 Based on table 9 from ISO 26262-6:2011, Copyright © The British Standards Institution 2018. All rights acknowledged

Topics
ASIL

A B C D
1a Function coverage + + ++ ++
1b Call coverage + + ++ ++
“++” The method is highly recommended for this ASIL.
“+”   The method is recommended for this ASIL.
“o”   The method has no recommendation for or against its usage for this ASIL.
Verified by the LDRA tool suite

Figure 18: Mapping the capabilities of the LDRA tool suite to the “Table 12: Structural coverage metrics at
the software architectural level” specified by ISO 26262-6:201831

Figure 19: Examples of representations of function and call coverage within the LDRA tool suite

Software test and model based development

These static and dynamic facilities can be integrated with several different model based development
tools, such as IBM Rational Rhapsody, MathWorks Simulink, and ANSYS Scade. The development phase
itself involves the creation of the model in the usual way, with the integration becoming more pertinent
once source code has been auto generated from that model.

Model based development offers many advantages to developers of automotive software and many
modelling tools include integrated model and auto-generated code testing features. However, ISO 26262
suggests that "In comparison to a traditional development process where lifecycle data are separated, a
stronger coalescence of the phases ... may occur. The potential benefits of this approach ... are appealing,
but this approach may also introduce issues causing systematic faults". An automated approach to testing
that is integrated with the modelling tool and yet independent from it, helps to offset those concerns.

LDRA Ltd Implementing ISO 26262 2nd edition with the LDRA tool suite®19

 31 Based on table 12 from ISO 26262-6:2018, © The British Standards Institution 2018 . All rights acknowledged

Figure 20 illustrates one example of how an integration with Simulink can be deployed using an approach
appropriate for use with “Back-to-back” testing (Figure 11, 1n and Figure 13, 1e). Design models are
developed with Simulink and verified with Simulink tests. Then, code is generated from Simulink,
instrumented by the LDRA tool suite, and then executed in Software In the Loop (SIL or host), or Processor
In the Loop (PIL or target) mode. Structural coverage is then collected and structural coverage reports can
be generated at the source code level by Simulink and by source code dynamic analysis in tandem.

Figure 20: Generating structural coverage data of auto generated code with MathWorks Simulink and
the LDRA tool suite

The generated source code can be analysed statically to ensure compliance with an appropriate coding
standard, such as MISRA C:2012 Appendix E32. Additional dynamic testing can be performed at the source
level from within the LDRA tool suite. Requirements based tests can be created to verify functionality and
collate structural coverage. Test data can also be imported from Simulink and used to migrate test data to
the LDRA tool suite for efficiency.

Real time embedded systems based on auto generated code usually also include some level of
conventionally written code. Software for board support packages, interrupt handlers, drivers, and other
lower-level code is typically hand coded. Legacy code is almost always part of deployed systems. These
portions of the system can be verified using traditional methods using the LDRA tool suite alongside auto-
generated code.

Bidirectional traceability (parts 4 and 6)

Bidirectional traceability is referenced throughout ISO 26262. It is explicitly mentioned in part 6 paragraph
7.4.2:

“This implies bi-directional traceability between the software architectural design and the software safety
requirements.”

More generally though, its presence is implied by the need for each development phase to accurately
reflect the one before it, such as in part 6 paragraph 9.1, which requires that all requirements are fulfilled
with no additional undesirable properties:

“c) to provide evidence that the implemented software unit complies with the unit design and fulfils the
allocated software requirements with the required ASIL; and
d) to provide sufficient evidence that the software unit contains neither undesired functionalities nor
undesired properties regarding functional safety.”

LDRA Ltd Implementing ISO 26262 2nd edition with the LDRA tool suite®20

32 https://www.misra.org.uk/tabid/72/Default.aspx

https://www.misra.org.uk/tabid/72/Default.aspx

In theory, bidirectional traceability is easy to achieve. If the exact sequence of the V-model is adhered
to, then the requirements will never change and tests will never throw up a problem. But unfortunately,
challenges do arise during the course of a project.

Consider what happens if an integration test fails.

• It may fail because there is a contradiction in the requirements. If that is the case, the
requirements will need to change. But what other parts of the software are affected by that?

• It may fail because there is a coding error. If that is the case, then it will need to be corrected.
But what other software units were dependent on the modified code? What if they were
dependent on an incorrect output?

•	 It may fail because the requirements have an incorrect specification for the test parameters.
That means a requirement change. But have there been unit tests which are compromised
because these parameters were wrong?

These scenarios can quickly lead to situations where the traceability between the products of software
development falls down. While it is possible to perform the tasks of maintaining it manually, automation is
likely to help a great deal.

Software unit design can take many forms and can leverage natural language or model based approaches.
Either way, these design elements need to be bidirectionally traceable to both software safety
requirements and the software architecture. The software units must then be implemented as specified
and then be traceable to their design specification (Figure 21).

Figure 21: Traceability in the LDRA tool suite. The example detailed design is linked
upstream to software safety requirements and downstream to software units.

Figure 22 shows how to establish a traceability policy can be established between requirements and
tests cases of different scopes, which allows test coverage to be assessed. Test cases are reviewed and
developed based on requirements, and gaps in requirements coverage can be quickly assessed and filled.

LDRA Ltd Implementing ISO 26262 2nd edition with the LDRA tool suite®21

Figure 22: Performing requirement based testing. Test cases are linked to requirements
and executed within the LDRA tool suite

Conversely, bidirectional analysis can also determine test cases that are not linked to requirements, and
prompt for their correction. Additionally, it provides a mechanism for impact analysis with reference to
changes in requirements, tests, or code, and identifies where regression testing needs to be targeted in
order to rework overhead. It also provides a mechanism for the generation of artefacts such as traceabil-
ity matrices to present evidence of compliance to.

Figure 23: Extract from an LDRA tool suite traceability matrix (high-level requirements to tests cases)

LDRA Ltd Implementing ISO 26262 2nd edition with the LDRA tool suite®22

LDRA Ltd Implementing ISO 26262 2nd edition with the LDRA tool suite®23

Figure 23 shows a traceability matrix between high-level requirements and functional test cases. In this
example, there is one requirement which has no associated test case, and so the objective of test coverage
of high-level requirements is unfulfilled. A similarly transparent user experience is available for all facets
of test coverage analysis. By combining them with unit test capabilities, it offers an accessible mechanism
for ensuring traceability throughout the development lifecycle, and particularly during software unit and
integration testing.

In practise, initial structural coverage is usually accrued as part of this holistic process from the execution
of functional tests on instrumented code leaving unexecuted portions of code which require further
analysis; ultimately resulting in the addition or modifications of test cases, changes to requirements, and/
or the removal of dead code. An iterative “review, correct and analyse” sequence is typically needed to
ensure that design specifications are satisfied.

Confidence in the use of software tools (part 8)

This ISO 26262 supporting process defines a mechanism to provide evidence that the software tool chain
can be relied upon. The required level of confidence in a software tool depends upon the circumstances of
its deployment, with particular reference to:

• the possibility that the malfunctioning software tool and its corresponding erroneous output
can introduce or fail to detect errors in a safety-related item or element being developed, and

• the confidence in preventing or detecting such errors in its corresponding output.

The LDRA tool suite has been qualified for use with ISO 26262 up to ASIL D, which removes considerable
user overhead in providing evidence of that confidence (Figure 24).

Figure 24: Evidence of TUV approved qualification of the LDRA tool suite

It is classified as a TI2 (Tool Impact - 2) category tool because although a verification tool can fail to detect
existing errors in source code, unlike (say) an auto code generator it cannot introduce errors into an
application.

The TI2 classification dictates that the organization using the tool suite in the development of a compliant
application, is required to estimate the likelihood of them detecting any error introduced by the tool (Tool
Error Detection), with categories ranging from TD1 (high confidence) to TD3. Evidence of the reasoning
behind that assessment is required.

Tool Error Detection

TD1 TD2 TD3

Tool Impact
T1 TCL1 TCL1 TCL1

T2 TCL1 TCL2 TCL3

Figure 25: Mapping the characteristics of the LDRA tool suite to “Table 3: Determination of the tool
confidence level” from ISO 26262-8:201833

In turn, the TCL (Tool Confidence Level) is then derived from a look-up table as shown in Figure 25.
Depending on the user’s assessment of the application, the resulting TCL will therefore be either TCL1 or
TCL2 for the LDRA tool suite.

In all cases except where the tool suite is assigned TCL2 and the product is designated ASIL D, the
existence of a TUV certificate (Figure 24) is sufficient to establish confidence in the tool.

Methods
ASIL

A B C D

1a Increased confidence from use in accordance with 11.4.7 ++ ++ ++ +
1b Evaluation of the tool development process in accordance with 11.4.8 ++ ++ ++ +
1c Validation of the software tool in accordance with 11.4.9 + + + ++
1d Development in accordance with a safety standard + + + ++

“++” The method is highly recommended for this ASIL.
“+”  The method is recommended for this ASIL.
Applying TCL2 designation

Figure 26: Assessing the need for the qualification the LDRA tool suite when it is designated TCL2 from
“Table 5: Qualification of software tools classified TCL2” from ISO 26262-8:201834

Otherwise, the tool is required to be subjected to a validation process (Figure 26). showing
that the tool is capable of analysing sample software in the target environment. In this example
case, a Tool Qualification Support Package (TQSP) is available from LDRA to provide that sample
software.

Conclusions

The explosion in the quantity and complexity of automotive software is well documented. ISO
26262 in its latest second edition form, fine tunes the sound foundations established by the first
edition version and extends it, not only to include other types of vehicle, but also to acknowledge
the increasing impact of cybersecurity on the development of automotive software.

There is clearly an incentive to minimise the ASIL applied to each element of a system, because
of the reduced cost involved in achieving it. However, the whole principle of the assignment of
ASILs for various automotive systems implies an assumption of separation, such that the most
critical systems on a vehicle cannot be compromised by less critical functionality elsewhere. For
a connected vehicle to be considered safe and compliant with the principles of ISO 26262, it is
therefore imperative that attack surfaces are minimized, and that separation between systems is
optimized.

With that assurance in place, the principle of ASIL decomposition can help minimize the
overheads associated with functionally safe development that even now are relatively new to the
automotive sector. Tools such as those provided by LDRA are well proven in other safety critical
sectors, making them not only ideally placed to further optimize the route to compliance, but also
better established, than the standard itself!

LDRA Ltd Implementing ISO 26262 2nd edition with the LDRA tool suite®24

 33 Based on table 3 from ISO 26262-8:2018, Copyright © 2018 IEC, Geneva, Switzerland. All rights acknowledged
 34 Based on table 5 from ISO 26262-8:2018, Copyright © The British Standards Institution 2018. All rights acknowledged

Im
plem

enting ISO
 26262 2nd ed. w

ith the LD
R

A
 tool suite

® v2.0 08/19

www.ldra.com
LDRA Technology Inc.

2540 King Arthur Blvd, 3rd Floor, 12th Main Lewisville Texas 75056
Tel: +1 (855) 855 5372
e-mail: info@ldra.com

LDRA UK & Worldwide
Portside, Monks Ferry,

Wirral, CH41 5LH
Tel: +44 (0)151 649 9300

e-mail: info@ldra.com

LDRA Technology Pvt. Ltd.
Unit B-3, Third floor Tower B, Golden Enclave

HAL Airport Road Bengaluru 560017
Tel: +91 80 4080 8707

e-mail: india@ldra.com

Works Cited

“MISRA C:2012 - Guidelines for use of the C language in critical systems” ISBN 978-906400-11-8 (PDF),
March 2013

“RTCA DO-178C Software Considerations in Airborne Systems and Equipment Certification”, Prepared by
SC-205, December 13, 2011

“IEC 61508:1998 & 2000, Functional safety of electrical/electronic/programmable electronic safety-related
systems” IEC, Geneva, Switzerland

“ISO 26262:2011 Road vehicles – Functional safety”. The British Standards Institution

“ISO 26262-4:2018 Road vehicles – Functional safety – Part 4: Product development at the system level”.
The British Standards Institution

ISO 26262-5:2018 Road vehicles – Functional safety – Part 5: Product development at the hardware level”.
The British Standards Institution

“ISO 26262-6:2018 Road vehicles – Functional safety – Part 6: Product development at the software level”.
The British Standards Institution

“ISO 26262-8:2018 Road vehicles – Functional safety – Part 8: Supporting Processes”. The British
Standards Institution 2018

“ISO 26262-11:2018 Road vehicles – Functional safety – Part 11: Guidelines on application of ISO 26262 to
semiconductors.” The British Standards Institution

“ISO 26262-12:2018 Road vehicles – Functional safety – Part 12: Adaptation of ISO 26262 for motorcycles.”
The British Standards Institution

“ISO/SAE CD 21434 Road Vehicles – Cybersecurity engineering”, ISO/SAE, under development
https://www.iso.org/standard/70918.html

“Experimental Security Analysis of a Modern Automobile”, Karl Koscher, Stephen Checkoway et.al. From
2010 IEEE Symposium on Security and Privacy
http://www.autosec.org/

“Remote Exploitation of an Unaltered Passenger Vehicle”, Dr. Charlie Miller & Chris Valasek, August 2015
http://illmatics.com/Remote%20Car%20Hacking.pdf

“SAE J3061-2016 Cybersecurity Guidebook For Cyber-Physical Vehicle Systems”, Society of Automotive
Engineers, 2016
https://webstore.ansi.org/standards/sae/sae30612016j3061

LDRA Ltd Implementing ISO 26262 2nd edition with the LDRA tool suite®25

http://www.ldra.com
mailto:mailto:info%40ldra.com?subject=
mailto:mailto:info%40ldra.com?subject=
https://www.iso.org/standard/70918.html
http://www.autosec.org/
http://illmatics.com/Remote%20Car%20Hacking.pdf
https://webstore.ansi.org/standards/sae/sae30612016j3061

